On a problem of discrete mathematics which has its
origin from isolated surface singularities with C*action
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1. Introduction

Let C* be the multiplicative group of non-zero complex numbers. In this paper
we think over the invariants of surface singularities with C*-action by applying dis-
crete mathematical methods. So, we will give a brief summary of C* singularities.

DEFINITION 1. A polynomial f(x,y,z) over C is weighted homogeneous of
type (a,b,c; h) where a,b,c and h are positive integers, if it can be expressed as a
linear combination of monomials x'yI 2% such that ai + bj + ck = h.

We consider a weighted homogeneous polynomial of type (a,b,c;h) with
ged(a, b, ¢) =1 which defines a surface on C3 such that it has an isolated singularity
at the origin, because this isolated singularity admits good C*-action. According
to [4], we call the notation (a,b, c; h) used in Definition 1 a system of weights for
answering the next question. Which type of a system of weights corresponds to
singularities with good C*-action?

DEFINITION 2. Let (a,b, ¢; h) be a system of weights, i.e., a,b,c and h are pos-
itive integers and h > max(a,b, c) is also assumed. A system of weights (a,b,c;h)
is reqular if the rational function in T

Thfa _ 1)(Th7b _ 1)(Thfc _ 1)

a C(
T (T —1)(T% — 1)(T° - 1) M)

can be simplified into a polynomial. In additional, if it has the property ged(a, b, ¢) =
1 then it is called reduced.

LEMMA 1. A reduced reqular system of weights (a,b,c;h) has the following
properties.

(i) For any two elements o and (3 in the set of weights {a,b,c}, ged(a, ) divides
the degree h .

(ii) FEach of the weights divides at least one from among h —a,h —b and h — c.

(iii) Any of the weights is not larger than %
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PROPOSITION 1 ([4]). Suppose (a,b,c;h) is a reduced regular system of
weights. By choosing suitable coefficients, a weighted homogeneous polynomial f of
type (a,b,c; h) has an isolated singularity at the origin.

See the reference [4] for more details. We may assume a < b < ¢. Now, the dual
graph of the canonical resolution of the singularity described above is star-shaped
which corresponds to the central curve and some rational curves if there exists.
More precisely, the geometrical invariants of exceptional curves are completely
determined by the reduced regular system of weights (a, b, ¢; ). In particular, the
following proposition gives us information about the central curve, what we should
focus on.

PRroPOSITION 2 ([2][3]). Suppose that (a,b,c;h) is a reduced reqular system
of weights. Then the genus of the central curve g is as follows:

2 a C Cc,a a C
(A e 00yl @l 6 @l

where the notation (a,b) implies ged(a,b) as usual.

2. A proof of the genus formula

Wagreich explains the correspondence between the isolated surface singularities
with C*-action and the graded rings of finite type in [6]. Thus the genus formula,
which we have showed in Proposition 2, is proved in the different ways. In [3], the
formula is obtained from the general theory of the graded ring. We will recall the
outline of the proof briefly.

DEFINITION 3.  Suppose that a Ting R has the direct sum decomposition, i.e.
R=®0X_ R Ifzy € Riyj forx € R; andy € R;, R is called a graded ring.

A graded ring we treat is a ring of finite type over C with R; = 0 for all i < 0.

DEFINITION 4. Let R be a graded ring of finite type with Ry = C. The
Paincaré power series of R is p(T) =Y .o, a; T where a; is dimcR;.

For a reduced regular system of weights (a,b,c; h), if f(z,y,2) is the defining
equation of a surface which has an isolated singularity at the origin, the corre-
sponding graded ring Ry is C[xz,y, z]/I where I is the ideal generated by f. Note
the weights a,b and ¢ induce the natural grading on this ring.

PROPOSITION 3.  The Paincaré power series o(T) of the graded ring Ry as
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above is given by

(T" 1)

T =) =T = 1) (3)

o(T) =

There exists a polynomial p(z), which is called Hilbert polynomial, so that
p(i) = dimcRg; for i > 0 where d = abc. By the fact that the genus g is equal to
1 —p(0), the formula desired is given.

Moreover, Prof. Saito insists on another way in order to find the genus in [5].
We will show it in the next section.

3. A restricted partition function

First, we need to prepare several terms and notations. Let Z>o denote the set
of non-negative integers. As usual, |z] is the floor function for real number z and
{z} sometimes means x — |z].

DEFINITION 5. Suppose A is a set of k positive integers {ay, as,...,ar}. Then
the function pa(n) defined for non-negative integers is a restricted partition func-
tion if

pa(n) = # {(mhxg, s, ay) € Zgo | a1y + aszo + -+ + apay = n} . (4)
We also use the similar notation as follows:
Pa (n) = #{(ycl,x27--~ cx) € NF | ayay + agas + -+ + apay = n} (5)

The generating function for {pa(n)},>o is well-known as

> opamT =] ﬁ (6)
n>0 i=1

In case of A = {a,b}, the next theorem is useful.

THEOREM 1 (Poroviciu [1]).  Suppose two positive integers a and b are rel-
atively prime. For any positive integer n,

() = - {2 feh )

where aa=t =1 (mod b) and bb~1 =1 (mod a).
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In [1], you can see the proof used such a general method that the generating
rational function for a sequence is decomposed as a partial fraction. If d = (a,b)
divides n then for o’ = §,b" = % and n' = & we can apply the Theorem 1 because
of prapy(n) = prarpry(n'). In other case, it is clear that pg, 4y (n) = 0.

Moreover, if we choose a suitable solution (z¢,%0) € Z? for the equation ax +
by = n, the equation axg + byy = n induces zg = a’~'n’ (mod ¥') and yo = b'~1n’
(mod ). Since any solution (xy,yx) can be expressed as xy, = xo +bl, yr = yo —al
by a suitable integer I, we get the next Corollary with easy.

COROLLARY 1.  Suppose d = (a,b) divides n. So, there are infinitely many
solutions (g, yx) € Z2 for the equation ax + by = n. Then it is hold that

p{a,b}(n):%—{%}—{dibk}*‘L (®)

Next, we will see Popoviciu’s Theorem from the viewpoint of elementary geom-
etry through some examples.

ExXAMPLE 1. Let a,b and n be 2,3 and 17 respectively, so we have a solution
(z0,y0) = (1,5) for 2z 4+ 3y = 17. By Corollary 1, we find

p{gyg}(l'?):%—{g}—{%}—i-l:& ()

Even though we choose a solution (xq,yo) = (—2,7), we can get the same answer
from {g} = {%} = % and {%} = {%2} = % Now, three positive solutions which
the equation (9) indicates are regarded as the lattice points P, @ and R on the line
2z + 3y = 17 in Figure 1. Here, we adopt the distance between the two points
P and @, which are next to each other, as a unit. It means that the lengths of
AP and RB are % and % respidively by this measure. As result, pyp51(17) — 1 is
consistent with the length of PR by this measure, that is two units.

In general, the above observation is true. The measure can be induced by a

unit caused from the lattice points P and @ on the line ax + by = n which are

next to each other. Then % implies the length of AB by this measure. Also, let

P(z0,10) be the nearest lattice point on the right of A, and the length of AP is
{d%}. Similarly, let R(z1,y1) be the nearest lattice point on the left of B, and
the length of RB is {%} So P is located on 42 — {%} — {20} units from R
where the positive direction is right side. Therefore in addition one to this value,

we obtain the number of the lattice points on AB.

EXAMPLE 2. Let a,b and n be 3,7 and 5 respectively, a solution (zq, yo) for
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Figure 1.

3z + Ty = 5 may be (—3,2) or (4,—1). Weget p3 3 (5) = & — {2} — {3} +1=0.

We can also give a similar observation for A = {a,b,c}. Although pa(h) is the
number of lattice points on the domain {(z,y,2) € H | ,y,z > 0} in the plane
H : ax + by + cz = h, we will treat the points which are projected to the zy-plane,
occasionally the yz-plane or the xz-plane, in order to compute them with easy.

DEFINITION 6.  For any lattice point (xo,%0,20) € Z° on a plane, we call
(z0,y0), which may be (yo, z0) or (zo,20), a projective lattice point.

ExAMPLE 3. For a reduced regular system of weights (2,3,9;18), Figure 2
shows the projective lattice points corresponding to the plane 2x + 3y + 9z = 18
and pys 3.9 (18) = 7. Moreover, we can find Pick’s theorem.

Figure 2.

THEOREM 2 (P1cK [1]).  For integral convex polytope P, i(P) and b(P) denote
the number of the lattice points in the interior of P and that on the boundary of P
respectively. Then the area of P is equal to i(P) + 3b(P) — 1.
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Consider the coordinate system which has the fundamental parallelogram
PQRS as a unit area, and the area of the colored triangle A is 3. On the other
hand, we can think the projective lattice points as the ”ordinary” lattice points, so
there are 7 lattice points on A with including 6 ones on the boundary of A. Thus
we get i(A)+ %b(A) —1 = 3. In addition to say, the area of the rectangle OACB is
double the area of A and it is equal to 2i(A)+b(A) =2 = pyap, (h)+ 1‘%{(1,1),0} (h)—2
where a, b, c and h are 2,3,9 and 18. We will discuss this observation in the general
cases later.

Finally, we can mention the other aspect of the genus.

PROPOSITION 4 (SAITO [5]). The genus g of the central curve determined by
a reduced regular system of weights (a,b,c;h) is equal to piqp.cy(eo) where € is

h—a—b—c, that is g :IO){a,,b,c} (R).

We know the genus ¢ is 1 by using the equation (2) for Example 3 and it is
consistent with g{a,b,c} (h).

4. A main result

In this secton, we will directrly connect the genus formula in Proposition 2 with
the formula in Proposition 4 by computing the corresponding lattice points.

First, we give some lemmas and notations for a reduced regular system of
weights (a, b, c; h). From now on, A denotes the set of weights {a, b, c}.

LEMMA 2. Let a and h be positive integers.

m@wwiﬁ@—{ﬁﬁQ (10)

a a

It is clear that p(,)(h) = 1 if and only if a | h, i.c., a divides h, but otherwise
P{a}(h) = 0. When we consider any element « in the set A as a, d, denotes {%}
in the the equation (10).

By Lemma 1 (i), we apply Corollary 1 for any two elements o and 3 in the set
A, then we have

o) = 0 _{(@I)_ f (@B} )

af o &)

where (z0,%0) is a suitable solution of ax + Sy = h. Also, 04,3 denotes {%} +

{d%} in the the equation (11) where d = (o, 3), and we get the folloing lemma
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from Lemma 1 (ii).

LEMMA 3.  For a reduced regular system of weights (a,b,c;h), the following
properties are hold.

() a|h=0ap={22"Y} and 5, , = {22}
(i) v [ h—a =06, = {21} and 65, = 5, + {{22=)y
Under the condition v | h — «,
(a) a|h= 00y =20,
_ h
(b) B1h= 85, = {4}
PROOF. (i) Choose (20,0) = (£,0) and (2o, 20) = (£,0) for the equations

h = ax + Py and h = ax + vz respectively.
(i) Since (o, ) | h by Lemma 1 (i), it follows from (o, 7) = (7, h).

(a) By the assumption, we have the expression h = o + yyo = azxi, so we get
Oay = {m—,f’)} =0,. (b) It is clear by the next remark. O

REMARK 1. If v | h — « then [ and ~ are relatively prime. Because (3,7) | h
by Lemma 1 (i) and then (8,7) | a, but (a, b, c; h) is reduced, i.e., (a,b,c) =1,

By Definition 5, the next lemma is hold.

LEMMA 4. Let A be a set of three positive integers and h be a positive integer.

pa(h) =pa (h) + > Pasy(B) =D pray(h) (12)

{a,B}CA €A

Next, we rewrite the genus formula in Proposition 2 by using both equations
(10) and (11) as follows:

2= >, (Pram(h) +0ap)+ D (Pray(h) + ) +2
ave {a,B}CA acA

=V J— S e+ S () — 642 (13)

abe {a,B}CA acA

where 0 = Z{ﬂﬁ}CA 0,8 = D Oa — {ﬁ}

We should recognize § is integer. Now, comparing the equation (12) to the
equation (13) give us the next result.
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PROPOSITION 5. Suppose (a,b,c; h) is a reduced regqular system of weights. If
r=+#{a € A|ath} then the following is hold.

2

palh)+Pa (h) = {%J —30+2 where {

60=0 for r=0,1

14
0<é<r—1 for r=2,3 (14)

Finally, this proposition gives what we want.
COROLLARY 2.  The genus g is equal to ZO7A (h).

PRrOOF. We have only to examine the equation (14) is true for cases I ~ IV,
which are classified in order from r» = 0 to 3.

As in section 3, we treat projective lattice points. Moreover, for the lattice
point (xo, Yo, 20) on the plane ax + Sy + vz = h, where {a, 5,7} = A = {a,b,c},
we will express the corresponding projective lattice point as [xg, yo, z0]. Also, the
line aur 4+ By = h can be expressed as z = 0. So, projective lattice points are only
on the line z = k(a, 8)y where k is an integer, because of (o, 3,7) = 1.

B2
abe

1 (i) and (a,b,c) = 1. In Figure 3, consider the fundamental parallelogram APRS

Case I.  Since all weights a, b and ¢ divide h, we see that is integer by Lemma

‘y
I
¥ - .
IA[0.h/B,0] s W e E
» . -
= [0 0/B:0] "o
4 L2 s
Q N % %
R . ™~ Q e
3 Bh/a.0,0] SR e
g . ¥ 100071 2
Figure 3.

as a unit area, which means the length of AP and that of AS are regarded as units

E— 2
respectively. So, the length of AB may be (a[;%)h, and then (a(;%)h . (a’é)v =L
means the area of the rectangle OACB by this measure. Now, let A denote the

triangle OAB. By noting that the projective lattice points are regarded as ordinary

ones, it is clear that p4(h) implies the number of projective points on A. Also, we
see that

i(A)=Pa () and b(A) = pa(h)— P4 (h).

Thus, by applying Theorem 2 for the triangle ABO or the rectangle OACB , we
obtain the equation (14).
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Case II  We assume that « { h and 3, v | h and may be « | h — ~. First, it’s clear
that 6g = d, = 0 and we have dg , = 0 from Corollary 1 or Figure 1. Next, we get

Sy = 00 = é and 0o, 5 = {Of—LB} form Lemma 3 (ii). As we see (ﬁéz)h, (Z;L €7,

we obtain = 0 by noting {J‘—;ﬂ/} = 0q,p from

h h-— h? h
(B, vy, (15)

By By abfy  of
Finally, we adopt the fundamental parallelogram as the unit area like Case 1
and examine the equation (15) by using Figure 4. The left side and the first term

"
Y A
",

(6,5,2 20)~jf y \ ‘f\
Figure 4.

of the right side imply the areas of the rectangles OAEF and O AC B respectively.

By considering about OA as like as Figure 1, we see that L%J means the
number of the lattice points except for A on OA. Notice that Ul_bch is the sum

of the area of OAEF and {%J, and also that there are no lattice points in the
interior of the triangle ABEF . By applying Theorem 2 for the triangle OAF. we
obtain UL—;CJ = 2i(A) + b(A) — 2 where A is same as Case L.

Case III ~ We assume that « | h and 8, v 1 h, so we may take the following cases
(i) ~ (iil). For each case, 0 can be easily calculated by Lemma 3 and Remark 1, so
we will omit these proofs. As a result, we find out that the integer J is 0 or 1.

(1) B?A/‘hia = al”’?ﬂ‘hiav’y'hia

If 5 and v divide neither h— 3 nor h—~, we may suppose « | h— 3 by Definition
2. Then we get (o, 3) = a, (a,v) =1, (8,7) =1 and we have

@ 1 h2
da,p =0 = 5, Oy =0y = v’ 0=y~ {04757}

=
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We choose the projection to the yz-plane like Figure 5 in order to describe pro-
jective lattice points. Of course, the origin O is a lattice point and there are the
lattice points H|[1,0, ’”T“L 71, ’“T“,O}, G[%7 1,0] on the y,z axes. Moreover,

(3,2,9 :57) 8=1 i

Figure 5.

the number of the lattice points on HT and that of AB are as follows:

h—«

h
Py (h—a) = 5 T L pgyy(h) = 5 oy +1=pi(h—a) =4

By By By
and it is clear that 0 = 0 or 1. Let n be pyg 11 (h — ), which is the number of the

lattice points on HT. Similarly, the number of the units on OA and OB, which is
denoted as [ and m respectively, are as follows:

Here we have LLJ = h=a 4nd {i} = % from o < 3. So we see § = 03, — ﬁ&’y

h— ,B)(h — h—
l:p{aﬁ}(h) —1= a—’ya7 m:p{a,ﬂ}(h) 1= (Oé )Ogﬂ Oé) _ ﬁa.

Now, the rectangle OACB is divided into four ones, as if we have done to compute
the lattice points about Case II. In fact,

h—Q*i h_ <l+l> <m+g> *lm+ﬂ+l—a+i
afy ay gl B g '
The right-side means the areas of OHFT, AEFH, FDBT and ECDF in order
m la

from left. Though we have already known { n } & we see it form = =

afy [ T By v B

hﬁ_—nfa =n— 1. Let A’ be the triangle OHT, and we have Im = 2i(A’) + b(A') — 2

by Theorem 2. Thus, we obtain the result desired

{ah—/;J +2=Im+2n=(i(A") +n—2)+ (i(A") + b(A") +n)

=Da (h) +pa(h) +6.
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It is easy to know (a, 8) = (a,y) = 1 and we see (8,7) < min(8,~) by Lemma
1. Here, we notice dg, < 1 and put d = (8,7) and I = pgg1(h) — 1.

_ nl_J[on h h?
0= dust0ar— {5} = {2} + {&) - {5)
We choose the projection to the yz-plane like Figure 6 again. So, there are at least
three lattice points H |0, h%“ﬂ 1], 1[0, 1, #] on AB and the origin O.

E iy c

B i c
h-B. %
Do B \Tr0,1, 5B
U, e v
Ho, 2t 1 \ o Bt 4
- B 10511
et B N : B
o[, ¥ 0 — 7
(17.4,6 :34) 5=0 | * (1,4,6:34) &=1

Figure 6.

First, we notice that both triangles OAT and OH B do not have any lattice
point in their interiors. Moreover, there are no lattice points on OT except for
both ends and it is same about OH. Next, we focus on the lattice points on the
rectangle OUT H, exclusive of O and 7T'. So, they are arranged every [ points along
each line . = dk for k =0,..., %. In addition to this, the number of lattice points
on OUT is same as that on OTH. If we write the triangle OTH as A’ then it is
hold that i(A’) = i(A), which shows Im = 2i(A) 41 where m = 2. On the other

ad
hand, we get

o
o ay’

Mk
afy  «

:m-(l-i—éﬁﬁ):lm-&—m(ﬂ-&—%) =Im+

L
By &)

Thus, we obtain
n2
{a—ﬁvJ +2 =1Im+prapy(h) +praqy(h) +0
= 2i(A) + pesy1(h) = 14 prasy(h) + plaqyy(h) +0
=Da () +pa(h) +3.

(i) Blh—a,vth—a=al|h, B|h—a,v|h—0
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As we see (a,v) = (8,7) =1 and (o, 8) 2 1, put d = (o, 8) and | = pgqa 53 (h) —
1. Here, we notice [ = 4 Ba and dq,3 = 5 < 1. Also we put € = [dg,] and then
€is 0 or 1, because of 0 < 65, < 2.

0 =00, + 08y — 0y —{u;}:{u}—;}-i-{%}—i-e—%—{a’;}.

In this case, the projection to the zy- plane like Figure 7 is useful. As there are
three lattice points T[0,1, "2, K[1,2=2 0] and B[2,0,0], we can examine the
triangle KT'B as the case (1) or (ii).

A

. v !
v oy ‘\:”‘ i k T
Y T T s =y K[1.£% 0
N N R A
‘\ \‘
\‘ ‘)\
‘\ N -
\ " \ %
\‘ - “ ®
A L!E 70,1, % il
TN L sy
Te~ao \B S e B \ “\B
(5.7,34 :75) =0 X 9 e n *
i (3,5,14 :33) §=1 (4.8,5:28) &=0
Figure 7.

But if n = pya,43(h) — 1 > 0, we may choose the triangle K DB where a point
D on OB is not always projective lattice point but also ordinary one. It means
that D[%7 0, md] where we put m = {—J and 3 = "= md” So we use A; for the
former triangle and Ay for the latter. Then we recognize i(A) = i(Aq1) = i(As).

Here, we notice m > % € Z and {%} = {g} Moreover if n = 0 then we
can show [ < dv. So we think under the assumption 8 < dy at first, whether n is

0 or not. Thus, we will carry out on the rectangle KVT'B what we have done in

(ii). By g = Bd, we get
h—z—% £—<l+§) m+B leri*lJri
afy af dy B ay v By
It follows that

h? .
\;T&YJ +2= 2Z(A) + P{a.,B} (h) -1 + Dianq} (h) +p{[3,—y}(h) + 0.

Next, if 8 > dry then we will examine on the rectangle KU DB because of n > 0.
We use the projection to the xz-plane like Figure 8 in order to compute. At first,
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B h E "la - B
e — o B
01,084
V:ﬁ- -t
* 2 S (UBR
}7\\ o i;\
\ N B
A\ > L~
N L ﬂ \\ y * ~
5N “\ Yy
d g A
olROTET BEGE 5 [ :
(1,10,7 :31) 5=0 (2.28.5:38) &1 (5.4.3 25) 8=1 %"

Figure 8.

we think the meaning of lg of the next equation

h? 3 h
= —im B
ol m+ 5 + 7 (16)

We recall m = Vd;fJ—}—kwherek: {%J By 8| h—q, WeputM:h%and

write h = o + (Bd + dvk) M. Since | = | we have

a

I8 dMB  h  dkM 1 1
B_dME_ b ML L
Y ary ary o Y Y
Here, we notice LgJ =n— Ik and {%} = o,y — % If D is a lattice point then
n —lk =1, unless n — [k = 0. That is why the following equation is hold.

Im+n— 1k =2i(A) + Pla.p} (h) + P{ay} (h) —2. (18)

Also the equation Im+n—Ilk = [(m—k)+n shows the relation between the number
of the lattice points on the rectangle KUDB and that of the rectangle KVTB.
Therefore we get the equation (14) by the equations (16), (17) and (18).

EXAMPLE 4. For a reduced regular system of weight (2,28, 5;58), we know
n =>5,0 =2 from Figure 8. By k = L%J =2, wegetn—kl=5—2=1. It means
that D is a lattice point.

Case IV The last case has the property that any of weights a,b and ¢ does not
divide h, so we may think the following case (i) or (ii).

() alh=v Blh=yv[h-a
It is clear that (a,3) = (8,7) = 1. With regard to d = («a,7), we see d <

min(a,v) like Case 1T (ii), so let | = {Z—H and then we see | = pyo 43(h) — 1 by
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Oay = ng % < 1, which means h = a + vy + 1.
Now, we choose the projection to the xrz-plane like Figure 9. As there are
three lattice points G[hﬂ“’7 1,0], H[0, h T 1] and 71,0, 2 #5%]; we may examine the

parallelogram HUTG because of same reason as before.

PNRL -T[l,o,h'T“]

Hl,:_f‘,l-ﬁ;- G[-f—_l_ﬂ]
Nl H[0. %

D e ) L
o[, B x O} B * B x B x
(6,7.4 :46) 5=1 (4,3,10 :34) §=1 " (4,3,5:29) §=2
Figure 9.

First, it is trivial that p(, g1 (h) > 1, but we can show by the following well-
known theorem. In general, for a set of positive integers A = {ay,...,a,}, we
define g(aq,...,a,) = max{n € Zso | pa(n) = 0} and call it Frobenius number.

THEOREM 3 (FROBENIUS).  Suppose two positive integers a and b are relatively
prime. Then Frobenius number g(a,b) is given by ab—a —b.

By (o, 3) = 1 and «, 3 | h —~, we can write h = v+ afk for a suitable positive
integer k and get pyq gy (h) > 1. Moreover, it may be o5 > 1, s0 we put € = [das]
where € is 0 or 1. Since p(ogy(h —7) = k + 1, we see pio,53(h) =k +1 — ¢ and
505 =€+ alﬁ'

h? ¥ 1 h?
= tag bt~ {5 b= o= {5}

Here we put m = VT;J and have the equation

h? dh h < d(a+ 'y)) < ) l'y h h
— == I+ =2 (m+-L)=im +—+ =
afy ~ ay dp oy dp MR R
We see é% =k— % from h — v = affk = o+ %1, so Im + k is consistent with the
number of the lattice points on HUTG except for HU, which is 2i(A) +praqy(h).
Thus we obtain

h? .
{TMJ +2=2i(A) +p{a7@}(h) + p{aﬁ}(h) +D(s.} (h) + 6.
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Lastly, it is clear that 0 < 0 — e < 2. If ¢ = 0 then a + df = ~ is satisfied by the
observation of the arrangement for two lattice points, for example E and H on the
center graph in Figure 9. Then (7.3, « : h) is the same type as (a.3,7 : h) and
05,y > 1 is hold, because of pyg 43 (h) = pra43(h — a) — 1. Therefore we obtain §
is 1 or 2.
(i) alh—v 8lh—a,y|h-8
The case (ii) is the rest of the case (i), which means that we omit any reduced
regular system of weights with the condition of the case (i). When we suppose that
a < B < 7, we may think about two cases by whether 3 divides h — v or h — a.
That is
(a)a|h=7,B|lh—a,v|h—=0 or
B alh—8 Blh— 7 h-a
But we might be aware that there is no difference on the arrangements of lattice
points with looking through Figure 10. Indeed, we can write h = y+la = a+mf =
B+ n~y by a suitable positive integers [, m and n for the case (a). Here we note that
l,m and n must be greater than 1. (See the point D[l — 1,1 —m, 1+ n] in the left
side of Figure 10 is located upper the line z = % which is character of this case.)
Anyway, there are lattice points GJl,0,1], H[1,m,0] and T[0,1,n]. Similarly, we
can put G[I,1,0], H[1,0,n] and T'[0,m, 1] for the case (b).

g D;“h 14n] 4
e 1
G,
D[l “Lum+1,1}n |
TEom:lf | =)
; G[f.1.0]
B > [e] . B., x
(2,3,7 :17) =1 e B (3,4,17 37) s=1

Figure 10.

In the case (ii), any two numbers of weights a,b and ¢ are relatively prime.

(a) First, we see 4 is like that

CRORORC
o B ¥ afy )~
By the assumption, «, # and  are expressed as follows:

a=ny+(1-m)p, f=la+1-n)y, y=mf+(1-1a (19)
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So we see n < | and n < m with easy. Moreover, we use some relations with
weights, for instance mg = mla + m(l1 —n)y =~y — (1 =)o and (o, ) = 1, and
then we obtain

at=(n—-1)m+1, pt=(10-1)n+1, yt=m-1)I+1

where ¢t = prq g3(h). Because prg 3 (h) =1 by h < v, these equations can also
be geometrically found from the triangle UV H or TUG where we put V{n(l —

1),nm +1,0] and U divides VT in the ratio n — 1 : 1. Next, we put tg = {%J

Rt DL 0T O BE 01 o B VA DAL

(3,7,26 :59) 8=1 o[-, (11,13,21 :76) 8=0

Figure 11.

and write m = toar + s where 0 < s < . Since we have §, g = % + i < 1, we get
to =t — 1. It follows that

i ﬁ—(t +1+5> <n+g)—nt phgns
afy af v 7B a v T8 a T ay
s n I (n—1)m+1 s n 1
=ttt gttt =tgt—+ =+ -+t
a [ v o a B v

Thus we obtain

h2
{TMJ + 2=ty + P{B,~v} (h) + Plan} (h) + 0+ DP{a,B} (h)

If h < o then H is the only lattice point on OB. So we have t = Plagy(h) =1
and 0,3 = % + 2. As h < ay and h < (7 are also satisfied, so we get pa(h) =3

[e3
and }%A (h) = 0. Moreover, if h > af3 then we see n = 2 by observing Figure 11, so
we get g = 2 IOJA (h), Therefore, we obtain the equation (14).
(b) As we have decided I, m and n such that h = § +la = v+ mf = a + nvy for
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this case, we get
l m n h?
ORORCREe
B ¥ o By
Moreover, we have the relations among weights as follows:

Oé:mﬁ*F(l*n)’% 5=n7+(1*l)047 'Vzla+(17m)6

Also, we see m < [ and n < [ by comparing to the equation (19). Now, we can
write

at=(m—-1n+1, pt=nm-1I+1, ~t=(1-1m+1, (20)

for a suitable positive integer t. If h < fy then pyg,1(h) = 1, so we see t =
P{a,5}(h)-

o NHEL ) et
.. 0.1

T

GG DELm-1)(h-1).1] \

REORY : [0 1Y Ul D)L (10,11

P ey

~ ~,

i A o > 3 i
Of [ G0 V. oI GE1.0] v r
(34,17 37) B=1 W50 (7.9,10 :37) &=1
Figure 12.

Therefore we can give the proof as same as the case (a). Indeed, we have

ok ﬁ_<l+@) (1+M)_1+@+n(l+i)
afy Py « B v a B v a fp
n m I (m-DI4+41 n m I
=t — 4+ = —+ — + — +L 21
Py TETT 8 ot TS @)

Here if ¢ > 1 then we see n = 2 and L%J —t—1=2p,4 (h). If t =1 then it is
clear, so the equation (14) is hold for h < (3.

Finally, we will examine the case with A > (. When we put V[—1,2m,2 — n],
VD and TG intersect at F like Figure 13. Since pya,5(h) > pia3(h) > 2 and
the triangles TV F' and GDF are congruent, we see that piq gy (h) = pa,y1(h) =
P34} (h) = 2. Moreover, we obtain t = 23 + 1 by the equation (20) and the
arrangement of the lattices.
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VA 20 2o,

Figure 13.

Thus ¢ + 1 is the number of the lattice points on VD, so t — 1 = 2 ]OJA (h). By
the equation (21), we get

h2
{TMJ +2= Pian} (h) + P~} (h) + P{a,8} (h)y+t—1490

= pa(h)+Pa (h) +3.
]

Lastly, the author is interested in whether singularities or its minimal models
for special cases like IV have something characteristic but particular combination
of its weights.
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